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NUMERICAL STABILITY INVESTIGATION OF THE LAGRANGE SOLUTIONS 

1. 
ton’s 

We examine the motion of three material points attracted to each other by New- 
law. The differential equations of motion of the three-body problem allow a particular 

solution, corresponding to the motion under which the three bodies form an equilateral 
triangle rotating in their own plane around the center of mass of the three-body system. 
We investigate the stability of this particular solution for the case of the elliptic restric- 
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We investigate numerically the triangular points of solutions of the elliptic restric- 

ted three-body problem. For the planar problem we have constructed, in the space 

of parameters e and p (e is the eccentricity, p is the ratio of the mass of the 
smaller of the two main bodies to the sum of their masses), the stability region for 
a majority of initial conditions and the region of formal stability. For resonant 
values of the parameters we found Liapunov-instability or stability in the fourth 

approximation relative to the coordinates and momenta of the perturbed motion. 
For spatial problems we have obtained a statement of stability in the fourth appro- 

ximation. 

ted three-body problem. 

We consider the planar problem. We select the measurement units such that the dis- 

tance between the bodies of finite mass, the sum of their masses, and the gravitational 
constant equal unity. Then in Nechvile coordinates with true anomaly v as the indepen- 
dent variable, the expansion of the Hamiltonian function of the perturbed motion has the 

form H-HHz+H3+Hr+... 

H2 = &P12 + Pz2) + Q2P1- q1p2+ 1 +eicosy($q12- +q2 -- 
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Here e is the orbit eccentricity of the main bodies, p is the mass of the smaller one 
of them, and qi, pi are the generalized coordinates and momenta. 

It is known Cl, 21 that in the circular problem (e = 0) the Lagrange solutions are 
Liapunov-stable for all p from the interval 

0 < p < l/18 (9 -- JGCi) N 0.0365208... 

except for the two values p1 z 0.02429... and pz = 0.01352... (third- and fourth-order 
resonances) for which instability takes place. For small values of eccentricity e it has 

been shown ( *) that for nonresonant values of p from the stated interval and for suffi- 

ciently small P the Lagrange solutions are stable for a majority of initial conditions, 

while for 0.024294... < 11 < 0.0385208 .,, and for sufficiently small P, not belonging 
to the resonance curves of third and fourth order, the Lagrange solutions are formally 
stable. For values of parameters e and p falling on third- and fourth-order resonances, 
we have obtained statements on stability in the fourth approximation and on Liapunov- 

instability. 
At the present time it is not possible to solve analytically the problem of the stability 

of the Lagrange solutions for arbitrary values of the eccentricity. Even in the linear ap- 

proximation the question can be answered only by numerical integration on modern elec- 
tronic computers. 

Danby [3] was the first to find numerically the region of stability in the first approxi- 

mation in the plane of parameters e and p , This region is shown in Fig. 1, where the 

third- and fourth-order resonant curves obtained in [4] are also presented. The resonant 

curves are numbered in accordance with the following values : (I ) 4X, = - 1 ; (2 ) h, -j- 

3h,=O ;(3) 3h,=-1;(4)k,-331,=2: (5) 2(h,- &)=I; (6)hl+2h,= 

O;(7) 3&+&=2;(S) 3h,-&=3 z(9) 2&-i-h,= 1;(10)h~+3?L,=-l; 
(II) h, - Zh, = 2 ; (12) ‘a, = 3; (13) 3X2 = -2. 

Suppose that the characteristic indices -&- ih, and -&ih, of a system with Hamiltonian 
H, are such that all its multiplicators are different. Then the system’s Hamiltinian func- 

tion H can be reduced to the form (see [5], for example) 

h .,lvp.,sva (v + 24 = h.,,v,w, (9 (L2) 

by a real linear canonic transformation 2n-periodic in v . In the present paper this 
transformation is found with the aid of the algorithm proposed in [63. Further, if the con- 
dition 

W, + W., =#= fl (N is an integer) (1.3) 

*) Markeev, A. P., Investigation of the stability of the Lagrange solutions of a planar 
elliptic three-body problem. Preprint IPM Akad. Nauk SSSR, Npl, 1973. 
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is for integers k,, k, satisfying the equality 1 I$, 1 -i- [ k, 1 = k, k = 3, 4, then 
there exists a canonic transformation, analytic in qi, pi and 2x-periodic in v , reducing 
Hamiltonian (1.2) to the form 

H = &r, $ h,r, + czor12 + wlr2 i- co2r22 + H* (qi, pi, v) (1.4) 
2rj2 --_ qi2 -1. 1~~2 

Here the coefficients ~:a”, err, coa do not depend on v but only on the parameters e 
and /r, while the function H* , &-periodic in v, is analytic in qi and pi and its series 

expansion in the coordinates and momenta starts with terms of not less than fifth degree. 
The reduction of the Hamiltonian function (1.2) to form (1.4) was effected not by the 

commonly-accepted Birkhoff transformation [ 51 but by the method of point mappings 

(*). The method of point mappings is based on the idea of the possibility of reducing 

the study of the motions of a dynamic system to the study of the properties of the gene- 

rating functions prescribing the mapping. The reduction of Hamiltonian (1.2) to form 
(1.4) by the mapping method is accomplished in several stages. First, the mapping’s 
generating function is found from the Hamiltonian function, next, it is normalized, i. e. 
reduced to some elementary form, and, finally, the normalized Hamiltonian function is 
constructed from the resulting normalized mapping. Such normalization method yields 

a significant economy to machine time. 
Nevertheless, in order to find the coefficients cZO, ctr, co:. for every pair of parameters 

P and n from the stability region of the linearized problem we have to integrate on the 

electronic computer systems of differential equations, at first, of 16th order (for finding 
X1 and h, and the linear normalizing transformation), and afterwards, of 39th order (for 

obtaining the coefficients of the mapping’s generating function). It turns out that for 

large values of eccentricity c and for small values of n the computation time becomes 
very large for a prescribed accuracy. In this regard computations were not carried out 

for P > 0.6 and p < 0.001 in the region to the left of the value u” 1: 0.028595... (the 

parametric resonance point 21, = I) and for u > 0.042 in the right region. 
If D E. cl12 - 4c 2. do2 # 0, the equilibrium position qi = I)i -= 0 is stable for c 

the majority of initial conditions [ 71, while the motion in the neighborhood of the origin 

is conditionally periodic for these initial conditions. 
In the present paper, besides Arnol’d ,stability we examine one more type of stability, 

namely, formal stability [S], signifying that instability cannot be detected by taking into 
account any finite number of terms in the expansion of the Hamiltonian function. For a 
system with Hamiltonian (1.4) formal stability, as was established by Glimm [9], holds 
only in the case of sign-definiteness of the quadratic form F = c2,,r12 4 cllf-,~, -I 
c,)?I.~‘l in the region r1 > 0, r2 > 0. As is easy to see, the form F is sign definite 
either if D < (, or if D > 0 but all its coefficients cij have the same signs. 

Figures 2 and 3 show the results of numerical calculations for parameters e and lt 
belonging to the stability region of the linearized problem. From these figures we see 
that Arnol’d stability holds in the whole region wherein the necessary stability conditions 
are satisfied, excepting the third- and fourth-order resonant curves (see Fig. 1) and the 

*) Markeev, A. P., On the point mapping method andsome of its applications to the 
three-body problem. Preprint IPM Akad. Nauk SSSR, N*49, 1973. 
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curves D r= 0, shown in dashed lines in Figs. 2 and 3. In the figures the regions of 
formal stability are hatched ; the regions where D < 0 are depicted by a horizontal 

hatching, while the regions in which all coefficients cij have the same signs, by a sloped 
hatching (it turned out that there exist the only regions in which all the Cij are positive). 

2. We investigate the stability of the Lagrange solutions for third- and fourth-order 
resonances. First of all we note that the resonance curves JE,& 1 k,h, = .Y in which k, 
and k, have different signs do not require a detailed investigation because for such reso- 
nances Moser [8] has proved the formal stability of the equilibrium position of a non- 
autonomous lIamiltonian system. Formal stability holds here when other resonances of 
any order are absent. In the contrary case we can make an assertion on the stability if 
we account for terms of up to only the fourth order, inclusive, in the expansion of the 
Hamiltonian function. 

Let the problem’s parameters e and l,t be such that relation (1.3) is not satisfied when 

/ k, 1 -j- 1 k, 1 = 3 i.e. a third-order resonance relation holds. In this case it is impos- 
sible to reduce the system’s Hamiltonian function to form (1.4) because the presence 

of the resonance causes zero denominators to appear. The Hamiltonian function (1.2) 
can be reduced to the form [lo] 

N = ~~,~i~~~l~ll~~~~l~~l sin (k,cp, -+ k& -j- II* (ri, q jr 4 

where the polar coordinates ri, cp; are related to the coordinates (/i and to the momenta 

I” by the relatioE = J/‘_iT, Sin (pi, pi -_ j/-zi (JoS Cpj (i=l, 2) 

the coefficient aklk, does not depend on Y, while the function H* is periodic in v and 

its series expansion in powers of jf< starts with terms of not less than fourth degree. 
It has been shown [lo] that if n krkt + 0, the equilibrium position Qi = pi =: 0 is 
unstable. If n ,<ik2 = 0, then third-order resonance does not appear inthe third-degree 

terms of the series expansion of the Hamiltonian functions in powers of the coordinates 
and the momenta, and the stability investigation can be carried out as in Sect. 1. 

In the stability region for the linearized restricted three-body problem, in the plane 
of the parameters e and l& there exist five resonant curves of third order. and on four of 
them the quantities /%i and ,&a in the resonance relation (1.3) have the same signs. As a 
result of the numerical investigation carried out in the present paper it is clear that when 

e > 0 the coefficients ahrhr vanish nowhere for all four resonances 3h, = -1, h, -j- 

2% = 0, 2h, + h, = 1, 33L, = -2 , and, consequently, instability obtains on all 
the curves. 

We now consider parameters e and lt for which relation (1.3) is not satisfied when 
1 k”,‘, -t- 1 k, 1 = 4. I n t 1s case the Hamiltonian function of the problem can be reduced h’ 
to the form 

H = czor12 + cllrlr2 + co2ra2 + (3.1) 

b iii& r1 l~Zfkfi C)‘afk*r sin (k,cp, + k,vi,j + H* fyi, cri, v) 

Conditions for Liapunov-instability and for stability in the fourth approximation were 
obtained in [lo] as functions of the coefficients bklkl and ci:f of the Hamiltonian (3.1). 
Eight fourth-order resonant curves exist in the linearized problem’s stability region. In 
six of them the k, and k, in the resonance relations li,hi + k,h, mu: N have the same 
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Number Resonance Interval of instability 

0.022<e<0.611 
4hn = - 1 

h* + 3hs = 0 

2@"+ ?a) = 1 

32.r + k2 = 2 

hl+3h2=---1 

4h, = 3 

O<e<0.141 

0.026<e<0.45 

0.196<e<0.207 

Tabte 1 

Interval ofstability in the 
fourth approximation 

O<e<O .022 
0.6ll<e<0.8 

-_ 
0.141<e<O.8 

O<e<O .@26 

O<c<O .065 

e 

0.6 

0.2 

Fig. 4 

Fig. 5 
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signs. The calculations made show that both sections of stability in the fourth approxi- 
mation as well as sections of Liap~ov-instability exist on the fourth-order resonant 
curves. The results of the calculations are presented in Table 1. 

All resonant curves of third and fourth order are shown in Figs. 4 and 5. On all curves, 

except A, -+- 2?b, 0 and h, 4- 3h, -- 0, Liapunov-stability holds when e = 0 [2]. 

On the resonant curves A, - ‘?a2 ~~ 2, 3a, - &_ = 3, h, - 2h, .= 2, shown by 
dashed-dotted lines on the figures, formal stability [8] holds when other resonance rela- 
tions of any order are absent. On the third-order resonance curves 3h, = -4, ii1 + 
24 = 0, 21,., + a2 =z= 1) 3h2 -z -2 we stated Liapunov-instability when c + 0, 
as expected. These curves are depicted by dashed lines. On the fourth-order resonant 

curves /I?+ --= -1, i;, + 3, 0, 2( 3”, + L) 1, nx, j- hz - 2, 3.1 -b 
a, -1, 42 I = 3 the sections of instability are shown by dashed lines while the 

sections of stability in the fourth approximation, by solid lines, The results obtained in 
the present paper coincide when e : 0 with the results in [l, 21, and with the results 
of the analytical investigation, mentioned earlier, when ix is small. 

4. Let us look at the spatial problem. Its peculiarity is that the spatial frequency of 
the linear oscillations equals unity for all r and p and, consequently, always equals the 

frequency of the Kepler motion of the main bodies. It was proved in [ll] that for small 
p and C’ the presence of this resonance leads to the instability of the Lagrange sulutions. 
In the present paper we have clarified, as a result of the calculations made, that the La- 
grange solutions are stable in the fourth approximation for all f’ and 11 . Thus, we have 
not succeeded in finding the regions of instability. Apparently, if instability regions do 
exist, their boundaries pass very close to the third-order resonant curves or to the boundaries 
of the linear problem’s stability region. 
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We study questions of the stability of the equilibrium position of nonlinear systems 

neutral in the linear approximation. We obtain necessary and sufficient stability 

conditions in the presence of one resonance, as well as some results concerning the 
interaction of several resonances. We show that Liapunov instability follows from 
instability in finite order. 

1. We consider a system of ordinary differential equations with real coefficients 

ax, I dt = A,PXp + A,aYapa-, + * . 7 CL = 1, . . . . II (1.1) 

We study the stability of the equilibrium position .)‘i = . . . = J, = 0 (relative to 
variations of the initial data) if the eigenvalues of the linearized system are ,purely ima- 
ginary, simple, and nonzero (Condition (A)) Under these conditions the question of the 

stability of the equilibrium position in the resonance-free case was examined by Molcha- 

nov (*). This question has been studied for Hamiltonian systems in the presence of reso- 
nances of arbitrary order [l]. The case of one third-order resonance was considered in 
[2] for general systems. In the present paper we have obtained necessary and sufficient 
conditions for the stability of the equilibrium position of system (1.1) in second order by 

perturbation theory in the presence of parametric resonance . We have proved the Lia- 
punov-instability of the equilibrium position of system (1.1) in the presence of an arbit- 
rary third-order resonance if the system is Birkhoff-unstable (in second order) and we 
have examined the question of the interaction of two or of several resonances. In parti- 
cular, we have shown that the interaction of two resonances can lead to instability even 
when each resonance individually does not cause instability. 

Let &, . . ., A,, -X1, . . ., ---A, be the eigenvalues (frequencies) of the system 
being analyzed (21 = n). We say that system (1.1) possesses k th-order resonance if 
integers li,,, (??I = 1, . ., L), exist, not all equal to zero, 1 k, ) + . . . + 1 k, 1 = 

k, such that k,h, f . . . + krh, = 0. (For example, relations of the form 

?Li - 2kj = 0, pi + hj + 1,~ = 0, 1.i L Jvj - l.h =Z 0 

exhaust all third-order resonances). The vector (k,, . . ., k,) is said to be resonant. 

*) Molchanov, A. M., On the stability of nonlinear systems. Thesis for a Doctor’s 
degree, Moscow, 1962. 


